1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
/* Copyright 2023 Mario Finelli
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
//! Advent of Code 2023 Day 14: <https://adventofcode.com/2023/day/14>
//!
//! Today's challenge was not terribly difficult. After a relatively easy part
//! one, part two is a classic Advent of Code problem where in order to avoid
//! needing to run one billion (expensive) iterations of a loop we can instead
//! find a cycle that we are sure that there will be because of the way that
//! the input is crafted.
use std::collections::HashMap;
/// The solution for the day fourteen challenge.
///
/// We take the input as a string and an integer for the part which changes
/// whether we do a single tilt or 1,000,000,000 cycles of tilt north, west,
/// south, and then east. We start by parsing the input into a
/// [`std::collections::HashMap`] grid of, cube-shaped rocks, rounded rocks,
/// and empty spaces. Then, in part one we just run a single north tilt and
/// then count the load. In part two we do one billion cycles but we keep track
/// of the end states that we've seen and at which count in the cycle so that
/// when we find the loop, we can short-circuit the loop and then we count the
/// load.
///
/// # Example
/// ```rust
/// # use aoc::y23d14::y23d14;
/// // probably read this from the input file...
/// let input = "...\n.#.\nO..";
/// assert_eq!(y23d14(input, 1), 3);
/// assert_eq!(y23d14(input, 2), 1);
/// ```
pub fn y23d14(input: &str, part: u32) -> i32 {
let mut total = 0;
let mut map = HashMap::new();
let mut seen = HashMap::new();
let lines: Vec<_> = input.lines().collect();
let rows: i32 = lines.len().try_into().unwrap();
let mut cols: i32 = 0;
for (y, line) in lines.iter().enumerate() {
let y: i32 = y.try_into().unwrap();
for (x, c) in line.chars().enumerate() {
if y == 0 {
cols = x.try_into().unwrap();
}
let x: i32 = x.try_into().unwrap();
map.insert((x, y), c);
}
}
cols += 1;
if part == 1 {
tilt('N', rows, cols, &mut map);
} else {
let cycles = 1000000000;
for cycle in 1..cycles + 1 {
tilt('N', rows, cols, &mut map);
tilt('W', rows, cols, &mut map);
tilt('S', rows, cols, &mut map);
tilt('E', rows, cols, &mut map);
let grid = map_to_string(rows, cols, &map);
if let Some(seen_at) = seen.insert(grid, cycle) {
if (cycles - cycle) % (cycle - seen_at) == 0 {
break;
}
}
}
}
for ((_, y), c) in map {
if c == 'O' {
total += rows - y;
}
}
total
}
/// This function is responsible for modifying given map to its state after
/// applying a tilt in the desired direction. It basically works by going
/// row-by-row or column-by-column depending on the direction and then checking
/// each space until we find a boulder and then attempting to move it as far
/// as possible (either until we reach an edge, or another boulder) based on
/// what is currently in its adjacent tile.
fn tilt(dir: char, rows: i32, cols: i32, map: &mut HashMap<(i32, i32), char>) {
if dir == 'N' {
for x in 0..cols {
for y in 0..rows {
let c = map.get(&(x, y)).unwrap();
if *c == 'O' {
let mut current = y;
loop {
match map.get(&(x, current - 1)) {
None => break,
Some(above) => {
if *above == 'O' || *above == '#' {
break;
}
map.insert((x, current - 1), 'O');
map.insert((x, current), '.');
current -= 1;
}
}
}
}
}
}
} else if dir == 'S' {
for x in 0..cols {
for y in 0..rows {
let y = rows - 1 - y;
let c = map.get(&(x, y)).unwrap();
if *c == 'O' {
let mut current = y;
loop {
match map.get(&(x, current + 1)) {
None => break,
Some(below) => {
if *below == 'O' || *below == '#' {
break;
}
map.insert((x, current + 1), 'O');
map.insert((x, current), '.');
current += 1;
}
}
}
}
}
}
} else if dir == 'E' {
for y in 0..rows {
for x in 0..cols {
let x = cols - 1 - x;
let c = map.get(&(x, y)).unwrap();
if *c == 'O' {
let mut current = x;
loop {
match map.get(&(current + 1, y)) {
None => break,
Some(right) => {
if *right == 'O' || *right == '#' {
break;
}
map.insert((current + 1, y), 'O');
map.insert((current, y), '.');
current += 1;
}
}
}
}
}
}
} else {
for y in 0..rows {
for x in 0..cols {
let c = map.get(&(x, y)).unwrap();
if *c == 'O' {
let mut current = x;
loop {
match map.get(&(current - 1, y)) {
None => break,
Some(left) => {
if *left == 'O' || *left == '#' {
break;
}
map.insert((current - 1, y), 'O');
map.insert((current, y), '.');
current -= 1;
}
}
}
}
}
}
}
}
/// This function returns the grid as its string representation which is useful
/// for debugging but also used to store in our list of seen states when we're
/// trying to find a cycle.
fn map_to_string(
rows: i32,
cols: i32,
map: &HashMap<(i32, i32), char>,
) -> String {
let mut s = "".to_string();
for y in 0..rows {
for x in 0..cols {
s = format!("{}{}", s, map.get(&(x, y)).unwrap());
}
s = format!("{}\n", s);
}
s
}
#[cfg(test)]
mod tests {
use super::*;
use std::fs;
#[test]
fn test_map_to_string() {
let grid = HashMap::from([
((0, 0), '.'),
((1, 0), '#'),
((2, 0), '#'),
((0, 1), '.'),
((1, 1), 'O'),
((2, 1), '.'),
((0, 2), '.'),
((1, 2), 'O'),
((2, 2), '.'),
]);
assert_eq!(map_to_string(3, 3, &grid), ".##\n.O.\n.O.\n");
}
#[test]
fn test_tilt() {
let mut grid = HashMap::from([
((0, 0), '.'),
((1, 0), '#'),
((2, 0), '#'),
((0, 1), '.'),
((1, 1), '.'),
((2, 1), 'O'),
((0, 2), 'O'),
((1, 2), '.'),
((2, 2), '.'),
]);
tilt('N', 3, 3, &mut grid);
assert_eq!(*grid.get(&(0, 0)).unwrap(), 'O');
assert_eq!(*grid.get(&(1, 0)).unwrap(), '#');
assert_eq!(*grid.get(&(2, 0)).unwrap(), '#');
assert_eq!(*grid.get(&(0, 1)).unwrap(), '.');
assert_eq!(*grid.get(&(1, 1)).unwrap(), '.');
assert_eq!(*grid.get(&(2, 1)).unwrap(), 'O');
assert_eq!(*grid.get(&(0, 2)).unwrap(), '.');
assert_eq!(*grid.get(&(1, 2)).unwrap(), '.');
assert_eq!(*grid.get(&(2, 2)).unwrap(), '.');
}
#[test]
fn it_works() {
let input = concat!(
"O....#....\n",
"O.OO#....#\n",
".....##...\n",
"OO.#O....O\n",
".O.....O#.\n",
"O.#..O.#.#\n",
"..O..#O..O\n",
".......O..\n",
"#....###..\n",
"#OO..#....\n",
);
assert_eq!(y23d14(input, 1), 136);
assert_eq!(y23d14(input, 2), 64);
}
#[test]
fn the_solution() {
let contents = fs::read_to_string("input/2023/day14.txt").unwrap();
assert_eq!(y23d14(&contents, 1), 109098);
assert_eq!(y23d14(&contents, 2), 100064);
}
}