1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
/* Copyright 2023-2024 Mario Finelli
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
//! Advent of Code 2023 Day 13: <https://adventofcode.com/2023/day/13>
//!
//! Today's problem was fairly challenging and I spent quite a bit of time
//! figuring out exactly how to loop through all of the possible valid windows.
//! In part two the key insight is that compared to part one when checking the
//! equality of the rows/columns where there should be zero differences in
//! part two there should be exactly one (which means that we _shouldn't_ count
//! the old path from part one).
/// The solution for the day thirteen challenge.
///
/// We take the input as a string and a variable for the part that we're
/// solving (which we ultimately transform into the number of expected
/// differences when checking to see if we've found the path: `0` in part `1`
/// and `1` in part `2`). Then we split the input for each puzzle and parse it
/// into a vector of its rows and columns. We then loop through each set of
/// valid rows (i.e., that makes a valid path) and calculate all of the
/// parameters necessary to split the puzzle and compare the equality along the
/// dividing line. If we find the path then we increase the total accordingly.
/// Then we do the same process again for the columns.
///
/// # Example
/// ```rust
/// # use aoc::y23d13::y23d13;
/// // probably read this from the input file...
/// let input = concat!(
/// ".#.##.#.#\n",
/// ".##..##..\n",
/// ".#.##.#..\n",
/// "#......##\n",
/// "#......##\n",
/// ".#.##.#..\n",
/// ".##..##.#\n",
/// );
/// assert_eq!(y23d13(input, 1), 4);
/// assert_eq!(y23d13(input, 2), 400);
/// ```
pub fn y23d13(input: &str, part: u32) -> u32 {
let mut total = 0;
for puzzle in input.split("\n\n") {
let puzzle = puzzle.trim();
let rows: Vec<Vec<char>> =
puzzle.lines().map(|l| l.chars().collect()).collect();
let mut cols: Vec<Vec<char>> = Vec::new();
for i in 0..rows[0].len() {
let mut col = Vec::new();
for row in &rows {
col.push(row[i]);
}
cols.push(col);
}
let rows: Vec<String> =
rows.iter().map(|r| r.iter().collect()).collect();
let cols: Vec<String> =
cols.iter().map(|c| c.iter().collect()).collect();
let half = rows.len() / 2;
let is_even = rows.len() % 2 == 0;
for i in 1..rows.len() {
let len = if i <= half {
i * 2
} else {
(rows.len() - i) * 2
};
let offset = if is_even && i > half {
(i - half) * 2
} else if !is_even && i > half {
(i - half) * 2 - 1
} else {
0
};
let lstart = offset;
let lend = i;
let rstart = i;
let rend = if i > half { rows.len() } else { len };
let left = rows[lstart..lend].to_vec();
let right = rows[rstart..rend].to_vec();
if are_equal(&left, &right, part - 1) {
let index: u32 = i.try_into().unwrap();
total += index * 100;
}
}
let half = cols.len() / 2;
let is_even = cols.len() % 2 == 0;
for i in 1..cols.len() {
let len = if i <= half {
i * 2
} else {
(cols.len() - i) * 2
};
let offset = if is_even && i > half {
(i - half) * 2
} else if !is_even && i > half {
(i - half) * 2 - 1
} else {
0
};
let lstart = offset;
let lend = i;
let rstart = i;
let rend = if i > half { cols.len() } else { len };
let left = cols[lstart..lend].to_vec();
let right = cols[rstart..rend].to_vec();
if are_equal(&left, &right, part - 1) {
let index: u32 = i.try_into().unwrap();
total += index;
}
}
}
total
}
/// This function takes the left and right halves (or top and bottom) of the
/// puzzle at the divided line and compares them to see if they're equal or
/// not. Because we need to find the smudge on the mirror in part two we
/// actually count the number of differences that we find if a particular line
/// is not equal and then return the equality based on the total number of
/// differences that we found.
fn are_equal(left: &[String], right: &[String], allowed: u32) -> bool {
let mut diffs = 0;
for i in 0..left.len() {
if left[i] != right[right.len() - 1 - i] {
let lchars: Vec<char> = left[i].chars().collect();
let rchars: Vec<char> =
right[right.len() - 1 - i].chars().collect();
for j in 0..left[i].len() {
if lchars[j] != rchars[j] {
diffs += 1;
}
}
}
if diffs > allowed {
return false;
}
}
diffs == allowed
}
#[cfg(test)]
mod tests {
use super::*;
use std::fs;
#[test]
fn test_are_equal() {
let l = vec!["#...##..#".to_string()];
let r = vec!["#....#..#".to_string()];
assert!(!are_equal(&l, &r, 0));
assert!(are_equal(&l, &r, 1));
}
#[test]
fn it_works() {
let input = concat!(
"#.##..##.\n",
"..#.##.#.\n",
"##......#\n",
"##......#\n",
"..#.##.#.\n",
"..##..##.\n",
"#.#.##.#.\n",
"\n",
"#...##..#\n",
"#....#..#\n",
"..##..###\n",
"#####.##.\n",
"#####.##.\n",
"..##..###\n",
"#....#..#\n",
);
assert_eq!(y23d13(input, 1), 405);
assert_eq!(y23d13(input, 2), 400);
}
#[test]
fn the_solution() {
let contents = fs::read_to_string("input/2023/day13.txt").unwrap();
assert_eq!(y23d13(&contents, 1), 32035);
assert_eq!(y23d13(&contents, 2), 24847);
}
}