1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
/* Copyright 2023 Mario Finelli
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
//! Advent of Code 2023 Day 2: <https://adventofcode.com/2023/day/2>
//!
//! Today's challenge was fairly easy, the most challenging part was parsing
//! the input (which was straightforward with a few simple regular
//! expressions).
use regex::Regex;
use std::collections::BinaryHeap;
/// Draw repredents a handful of cubes in a game. Each color (red, blue, and
/// green) can have some or none.
#[derive(Debug)]
struct Draw {
red: Option<u32>,
blue: Option<u32>,
green: Option<u32>,
}
/// Game represents each game from the input, it has a number and a variable
/// number of draws.
#[derive(Debug)]
struct Game {
number: u32,
draws: Vec<Draw>,
}
/// The solution for the day two challenge.
///
/// As usual, we take the input as a string and an integer denoting the part of
/// the problem that we want to solve. In part `1` we return the sum of the
/// game numbers of the games that are possible, and in part `2` we instead
/// return the sum of the "powers" of the games (more information about how to
/// compute the power is in the prompt but basically the minimum number of
/// red, blue, and green cubes multiplies together). After we parse the input
/// we switch on the part and either check if the game is possible and add its
/// number to the sum or compute its power and add it to the sum.
///
/// # Example
/// ```rust
/// # use aoc::y23d02::y23d02;
/// // probably read this from the input file...
/// let input = concat!(
/// "Game 1: 20 red, 20 blue, 20 green\n",
/// "Game 2: 5 red, 5 blue, 5 green",
/// );
/// assert_eq!(y23d02(input, 1), 2);
/// assert_eq!(y23d02(input, 2), 8125);
/// ```
pub fn y23d02(input: &str, part: u32) -> u32 {
let mut sum = 0;
let mut games = Vec::new();
let red_regex = Regex::new(r"(\d+) red").unwrap();
let blue_regex = Regex::new(r"(\d+) blue").unwrap();
let green_regex = Regex::new(r"(\d+) green").unwrap();
for line in input.lines() {
let parts: Vec<_> = line.split(": ").collect();
let number = parts[0].split_whitespace().collect::<Vec<_>>()[1]
.parse()
.unwrap();
let mut draws = Vec::new();
for d in parts[1].split("; ") {
let mut draw = Draw {
red: None,
blue: None,
green: None,
};
if let Some(r) = red_regex.captures(d) {
draw.red = Some(r[1].parse().unwrap());
}
if let Some(b) = blue_regex.captures(d) {
draw.blue = Some(b[1].parse().unwrap());
}
if let Some(g) = green_regex.captures(d) {
draw.green = Some(g[1].parse().unwrap());
}
draws.push(draw);
}
games.push(Game { number, draws });
}
if part == 1 {
for game in games {
if is_possible(&game) {
sum += game.number;
}
}
} else {
for game in games {
sum += compute_power(&game);
}
}
sum
}
/// This function computes if a game is possible given the constraint on the
/// number of red, blue, and green cubes as specified in the prompt.
fn is_possible(game: &Game) -> bool {
let red = 12;
let blue = 14;
let green = 13;
for draw in &game.draws {
if let Some(r) = draw.red {
if r > red {
return false;
}
}
if let Some(b) = draw.blue {
if b > blue {
return false;
}
}
if let Some(g) = draw.green {
if g > green {
return false;
}
}
}
true
}
/// This function computes the power of a game. We use a
/// [`std::collections::BinaryHeap`] to keep track of the minimum number of
/// cube for each game across all draws and pop the heap for each cube to
/// compute the power.
fn compute_power(game: &Game) -> u32 {
let mut red = BinaryHeap::from([0]);
let mut blue = BinaryHeap::from([0]);
let mut green = BinaryHeap::from([0]);
for draw in &game.draws {
if let Some(r) = draw.red {
red.push(r);
}
if let Some(b) = draw.blue {
blue.push(b);
}
if let Some(g) = draw.green {
green.push(g);
}
}
red.pop().unwrap() * blue.pop().unwrap() * green.pop().unwrap()
}
#[cfg(test)]
mod tests {
use super::*;
use std::fs;
#[test]
fn test_is_possible() {
let game = Game {
number: 1,
draws: vec![
Draw {
red: Some(4),
blue: Some(3),
green: None,
},
Draw {
red: Some(1),
blue: Some(6),
green: Some(2),
},
Draw {
red: None,
blue: None,
green: Some(2),
},
],
};
assert!(is_possible(&game));
let game = Game {
number: 2,
draws: vec![
Draw {
red: None,
blue: Some(1),
green: Some(2),
},
Draw {
red: Some(1),
blue: Some(4),
green: Some(3),
},
Draw {
red: None,
blue: Some(1),
green: Some(1),
},
],
};
assert!(is_possible(&game));
let game = Game {
number: 3,
draws: vec![
Draw {
red: Some(20),
blue: Some(6),
green: Some(8),
},
Draw {
red: Some(4),
blue: Some(5),
green: None,
},
Draw {
red: None,
blue: None,
green: Some(13),
},
Draw {
red: Some(1),
blue: None,
green: Some(5),
},
],
};
assert!(!is_possible(&game));
}
#[test]
fn test_compute_power() {
let game = Game {
number: 1,
draws: vec![
Draw {
red: Some(4),
blue: Some(3),
green: None,
},
Draw {
red: Some(1),
blue: Some(6),
green: Some(2),
},
Draw {
red: None,
blue: None,
green: Some(2),
},
],
};
assert_eq!(compute_power(&game), 48);
let game = Game {
number: 2,
draws: vec![
Draw {
red: None,
blue: Some(1),
green: Some(2),
},
Draw {
red: Some(1),
blue: Some(4),
green: Some(3),
},
Draw {
red: None,
blue: Some(1),
green: Some(1),
},
],
};
assert_eq!(compute_power(&game), 12);
let game = Game {
number: 3,
draws: vec![
Draw {
red: Some(20),
blue: Some(6),
green: Some(8),
},
Draw {
red: Some(4),
blue: Some(5),
green: None,
},
Draw {
red: None,
blue: None,
green: Some(13),
},
Draw {
red: Some(1),
blue: None,
green: Some(5),
},
],
};
assert_eq!(compute_power(&game), 1560);
}
#[test]
fn it_works() {
let input = concat!(
"Game 1: 3 blue, 4 red; 1 red, 2 green, 6 blue; 2 green\n",
"Game 2: 1 blue, 2 green; 3 green, 4 blue, 1 red; 1 green, ",
"1 blue\n",
"Game 3: 8 green, 6 blue, 20 red; 5 blue, 4 red, 13 green; ",
"5 green, 1 red\n",
"Game 4: 1 green, 3 red, 6 blue; 3 green, 6 red; 3 green, 15 ",
"blue, 14 red\n",
"Game 5: 6 red, 1 blue, 3 green; 2 blue, 1 red, 2 green\n",
);
assert_eq!(y23d02(input, 1), 8);
assert_eq!(y23d02(input, 2), 2286);
}
#[test]
fn the_solution() {
let contents = fs::read_to_string("input/2023/day02.txt").unwrap();
assert_eq!(y23d02(&contents, 1), 2551);
assert_eq!(y23d02(&contents, 2), 62811);
}
}