1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
/* Copyright 2022 Mario Finelli
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

//! Advent of Code 2022 Day 13: <https://adventofcode.com/2022/day/13>
//!
//! I today's prompt to be rather challenging. Not because the rules were
//! particularly complicated, but it took me a while to figure out how to
//! represent arbitrarily nested, mixed (list of more of self or numeric) data
//! types into a single vector that would capture each packet. In the end the
//! solution was to use an `enum` type (that I called `Data`) that can by the
//! `T` in a `Vec<T>` that is either another vector of Data items or a numeric
//! primitive. Note that I actually used a [`std::collections::VecDeque`] to
//! represent the list of other Data types as when doing the comparisons we
//! want to look at the front of the lists first. Using a Deque and then
//! mutating it to perform the comparisons is fundamentally the wrong approach
//! (sorting a list of elements shouldn't also _modify_ those elements) but it
//! does allow me to simply pop and element from both lists at the same time
//! and compare if I got back `Some` or `None` without needing to resort to
//! index and length checking before attempting to read each element. However,
//! this also caused problems in part two, as I couldn't just run a normal
//! sort on an array of the packets, so instead I kept track of the original
//! string packet and then parsed it into the Data representation and ran its
//! order check on each pass of the loop inside of a custom [insertion
//! sort](https://en.wikipedia.org/wiki/Insertion_sort) loop. I chose insertion
//! sort as it's easy to implement and even though it has a bad worst case
//! complexity the actual data set is small enough that I don't expect properly
//! implementing quicksort or similar to make an actual difference.

use std::cmp::Ordering;
use std::collections::VecDeque;

/// We use the Data type to hold either a vector of other Data elements or the
/// number primitive. Putting it in an enum lets us use a single vector to
/// handle both types.
#[derive(Debug, PartialEq)]
enum Data {
    V(VecDeque<Data>),
    N(u32),
}

/// The solution for the day thirteen challenge.
///
/// We take the usual input as a string and whether we're solving for part `1`
/// (sum of the indices that are in order) or part `2` (product of the indices
/// of the two extra data packets that we add).
///
/// We start by splitting the input every three lines so that we check each
/// pair if it's ordered or not, we also add the string representation of both
/// to our vector that we'll sort later if we're computing part `2`. If we're
/// computing part `1` then we need to parse the input into a `Data`
/// representation and then check if the pairs are ordered. If they are then
/// we add one to our index and then add that to the sum of ordered indices.
///
/// After going through all of the pairs and we're doing part `1` then we're
/// done - just return the result. Otherwise we're doing part two and we need
/// to add the extra data packets and then sort all of them. As explained above
/// I implemented a simple insertion sort (while additionally parsing the input
/// for each comparison pass because of the state mutation) to achieve this.
/// After sorting we do one final loop through the input to calculate the
/// product of the indices of the extra packets we added and then we're done.
///
/// # Example
/// ```rust
/// # use aoc::y22d13::y22d13;
/// // probably read this from the input file...
/// let input = "[1,2]\n[3,[4]]\n\n[[5]]\n[]\n";
/// assert_eq!(y22d13(input, 1), 1);
/// assert_eq!(y22d13(input, 2), 18);
/// ```
pub fn y22d13(input: &str, part: u32) -> u32 {
    let lines: Vec<_> = input.lines().collect();
    let mut data = Vec::new();
    let mut result = 0;

    for (i, packet_pair) in lines.chunks(3).enumerate() {
        data.push(packet_pair[0]);
        data.push(packet_pair[1]);

        if part == 1 {
            let first_packet_raw: Vec<_> = packet_pair[0].chars().collect();
            let second_packet_raw: Vec<_> = packet_pair[1].chars().collect();

            let first_packet = parse_packet(first_packet_raw);
            let second_packet = parse_packet(second_packet_raw);

            match in_order(first_packet, second_packet) {
                Some(ordered) => {
                    if ordered {
                        result += i as u32 + 1;
                    }
                }
                None => panic!("Couldn't reach a decision!"),
            }
        }
    }

    if part == 1 {
        return result;
    }

    // we're strictly in part two here
    data.push("[[2]]");
    data.push("[[6]]");

    // insertion sort can be O(n^2) but we have such a small dataset that it's
    // fine; it's not worth the effort to implement a more efficient sorting
    // algorithm
    for i in 1..data.len() {
        let mut j = i;
        while j > 0
            && !in_order(
                parse_packet(data[j - 1].chars().collect()),
                parse_packet(data[j].chars().collect()),
            )
            .unwrap()
        {
            data.swap(j - 1, j);
            j -= 1;
        }
    }

    result = 1;
    for (i, d) in data.iter().enumerate() {
        if d == &"[[2]]" || d == &"[[6]]" {
            result *= (i as u32) + 1;
        }
    }

    result
}

/// Given two Data elements determines if they are in order based on the rules
/// from the challenge prompt. Getting back `Some` means that we have a
/// definitive answer, getting back `None` means that we need to keep
/// processing within the current loop.
fn in_order(a: Data, b: Data) -> Option<bool> {
    match a {
        Data::V(mut a) => match b {
            Data::V(mut b) => loop {
                // both a and b are lists, loop through them and compare

                let a_item = a.pop_front();
                let b_item = b.pop_front();

                match a_item {
                    Some(a_item) => match b_item {
                        Some(b_item) => match in_order(a_item, b_item) {
                            Some(v) => return Some(v),
                            None => continue,
                        },
                        None => {
                            // b ran out of items before a; they're not ordered
                            return Some(false);
                        }
                    },
                    None => {
                        // a ran out of items before b; if b still has items
                        // they they're ordered, if b also ran out of items
                        // then keep processing

                        if b_item.is_some() {
                            return Some(true);
                        } else {
                            return None;
                        }
                    }
                }
            },
            Data::N(b) => {
                // a is a list, b is not - convert it to a list and try again
                let mut b_as_v = VecDeque::new();
                b_as_v.push_back(Data::N(b));
                in_order(Data::V(a), Data::V(b_as_v))
            }
        },
        Data::N(a) => match b {
            Data::V(b) => {
                // b is a list, a is not - convert it to a list and try again
                let mut a_as_v = VecDeque::new();
                a_as_v.push_back(Data::N(a));
                in_order(Data::V(a_as_v), Data::V(b))
            }
            Data::N(b) => match a.cmp(&b) {
                Ordering::Less => Some(true),
                Ordering::Greater => Some(false),
                Ordering::Equal => None,
            },
        },
    }
}

/// Parse a data packet (given as characters) and return a its Data
/// representation.
fn parse_packet(chars: Vec<char>) -> Data {
    let mut number_builder = String::new();
    let mut array_stack: Vec<Data> = Vec::new();
    let mut current_array = Data::V(VecDeque::new());

    // skip the first character as input must always be a list and we
    // initialized the root vector above
    for c in chars.iter().skip(1) {
        if c == &'[' {
            // we found a new nested vector, put the current vector onto the
            // stack and then set the current vector to a new, empty vector
            array_stack.push(current_array);
            current_array = Data::V(VecDeque::new());
        } else if c == &']' {
            if !number_builder.is_empty() {
                // we found the end of an array, and we previously found some
                // numbers, parse them into an integer and then add it to the
                // current vector
                let number: u32 = number_builder.parse().unwrap();
                number_builder = String::new();

                let arr = if let Data::V(ref mut arr) = current_array {
                    arr
                } else {
                    panic!("vector will always be a Vector")
                };
                arr.push_back(Data::N(number));
            } else {
                // we found the end of an array, and we did not previously
                // find any numbers, close the array, pop the parent vector
                // off the stack and add the array to it; if there aren't any
                // vectors on the stack then we're already on the root vector
                // and we found the end of its input so we can return it
                match array_stack.pop() {
                    Some(parent_array) => {
                        let finished_array = current_array;
                        current_array = parent_array;
                        let arr = if let Data::V(ref mut arr) = current_array {
                            arr
                        } else {
                            panic!("array will always be a Vector")
                        };
                        arr.push_back(finished_array);
                    }
                    None => return current_array,
                }
            }
        } else if c == &',' {
            if !number_builder.is_empty() {
                // we found an array separator (",") and we've been previously
                // parsing numbers, convert them into an integer and then
                // re-initialize the number builder
                let number: u32 = number_builder.parse().unwrap();
                number_builder = String::new();

                let arr = if let Data::V(ref mut arr) = current_array {
                    arr
                } else {
                    panic!("array will always be a Vector")
                };
                arr.push_back(Data::N(number));
            } else {
                // we found an array separator (",") but we haven't been
                // parsing numbers which means that we found the end of an
                // array that is mixed in with other elements, pop the parent
                // vector off the stack and add the array to it; if there are
                // no parent vectors it means that we're in the root vector
                // already (which we got back after we found its closing "]")
                match array_stack.pop() {
                    Some(parent_array) => {
                        let finished_array = current_array;
                        current_array = parent_array;

                        let arr = if let Data::V(ref mut arr) = current_array {
                            arr
                        } else {
                            panic!("array will always be a Vector")
                        };
                        arr.push_back(finished_array);
                    }
                    None => continue, // current_array is already the root
                }
            }
        } else {
            // we found a number add it to our number builder so that we can
            // parse it when we get to a character that signals the end of a
            // number ("]" or ",")
            number_builder += &c.to_string();
        }
    }

    current_array
}

#[cfg(test)]
mod tests {
    use super::*;
    use std::fs;

    #[test]
    fn test_in_order() {
        let mut input_a = "[1,1,3,1,1]".chars().collect();
        let mut input_b = "[1,1,5,1,1]".chars().collect();
        assert_eq!(
            in_order(parse_packet(input_a), parse_packet(input_b)),
            Some(true)
        );

        input_a = "[[1],[2,3,4]]".chars().collect();
        input_b = "[[1],4]".chars().collect();
        assert_eq!(
            in_order(parse_packet(input_a), parse_packet(input_b)),
            Some(true)
        );

        input_a = "[9]".chars().collect();
        input_b = "[[8,7,6]]".chars().collect();
        assert_eq!(
            in_order(parse_packet(input_a), parse_packet(input_b)),
            Some(false)
        );

        input_a = "[[4,4],4,4]".chars().collect();
        input_b = "[[4,4],4,4,4]".chars().collect();
        assert_eq!(
            in_order(parse_packet(input_a), parse_packet(input_b)),
            Some(true)
        );

        input_a = "[7,7,7,7]".chars().collect();
        input_b = "[7,7,7]".chars().collect();
        assert_eq!(
            in_order(parse_packet(input_a), parse_packet(input_b)),
            Some(false)
        );

        input_a = "[]".chars().collect();
        input_b = "[3]".chars().collect();
        assert_eq!(
            in_order(parse_packet(input_a), parse_packet(input_b)),
            Some(true)
        );

        input_a = "[[[]]]".chars().collect();
        input_b = "[[]]".chars().collect();
        assert_eq!(
            in_order(parse_packet(input_a), parse_packet(input_b)),
            Some(false)
        );

        input_a = "[1,[2,[3,[4,[5,6,7]]]],8,9]".chars().collect();
        input_b = "[1,[2,[3,[4,[5,6,0]]]],8,9]".chars().collect();
        assert_eq!(
            in_order(parse_packet(input_a), parse_packet(input_b)),
            Some(false)
        );
    }

    #[test]
    fn test_parse_packet() {
        let mut input: Vec<char> = "[9]".chars().collect();
        let mut inner = VecDeque::new();
        inner.push_back(Data::N(9));
        assert_eq!(parse_packet(input), Data::V(inner));

        input = "[[9,8],7]".chars().collect();
        let mut inner2 = VecDeque::new();
        let mut inner = VecDeque::new();
        inner2.push_back(Data::N(9));
        inner2.push_back(Data::N(8));
        inner.push_back(Data::V(inner2));
        inner.push_back(Data::N(7));
        assert_eq!(parse_packet(input), Data::V(inner));

        input = "[[],[]]".chars().collect();
        let inner1 = VecDeque::new();
        let inner2 = VecDeque::new();
        let mut inner = VecDeque::new();
        inner.push_back(Data::V(inner1));
        inner.push_back(Data::V(inner2));
        assert_eq!(parse_packet(input), Data::V(inner));
    }

    #[test]
    fn it_works() {
        let input = concat!(
            "[1,1,3,1,1]\n",
            "[1,1,5,1,1]\n",
            "\n",
            "[[1],[2,3,4]]\n",
            "[[1],4]\n",
            "\n",
            "[9]\n",
            "[[8,7,6]]\n",
            "\n",
            "[[4,4],4,4]\n",
            "[[4,4],4,4,4]\n",
            "\n",
            "[7,7,7,7]\n",
            "[7,7,7]\n",
            "\n",
            "[]\n",
            "[3]\n",
            "\n",
            "[[[]]]\n",
            "[[]]\n",
            "\n",
            "[1,[2,[3,[4,[5,6,7]]]],8,9]\n",
            "[1,[2,[3,[4,[5,6,0]]]],8,9]",
        );

        assert_eq!(y22d13(input, 1), 13);
        assert_eq!(y22d13(input, 2), 140);
    }

    #[test]
    fn the_solution() {
        let contents = fs::read_to_string("input/2022/day13.txt").unwrap();

        assert_eq!(y22d13(&contents, 1), 6395);
        assert_eq!(y22d13(&contents, 2), 24921);
    }
}