1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
/* Copyright 2022 Mario Finelli
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
//! Advent of Code 2022 Day 5: <https://adventofcode.com/2022/day/5>
//!
//! The day five challenge mostly revolves around vector manipulation (my
//! chosen methodology for managing the state of the crates). The most
//! challenging part was to parse the input text into the initial state
//! representation.
//!
//! Once the input has been parsed part one has us move crates one at a time
//! from the top (end) of one stack onto another i.e., [`std::vec::Vec::pop`]
//! from one vector and then [`std::vec::Vec::push`] onto another. The second
//! part requires maintaining the order of multiple crates as they are moved
//! from one stack to another, so we just move them one at a time into a
//! temporary vector, reverse the order of that and then play them back into
//! the destination vector.
/// The solution for the day five challenge.
///
/// As the arguments correspond to the input text and the method of operation:
/// the reordering of crates (part `1`) or the maintaining of the order (part
/// `2`).
///
/// # Parsing the Initial State
/// To parse the initial state we first need to get all of the lines before
/// the first empty line which we can treat as the delimiter between the state
/// representation and the moves that we will need to make. The last non-empty
/// line of the state representation gives us a numbering of the columns
/// (which we can use to determine the total number of columns) that needs to
/// be discarded as it is not actually a part of the internal state
/// representation. Once we have the lines that represent the state we can
/// loop through them (in reverse order so that the items on the bottom of the
/// stacks are the first items in the vector) checking each column to see if
/// there is an element defined there or not (e.g, empty space or end-of-input)
/// and if there is then add it to the appropriate column vector.
///
/// # Example
/// ```rust
/// # use aoc::y22d05::y22d05;
/// // probably read this in from the input file...
/// let input = concat![
/// " [D] \n",
/// "[N] [C] \n",
/// "[Z] [M] [P]\n",
/// " 1 2 3 \n",
/// "\n",
/// "move 1 from 2 to 1\n",
/// "move 3 from 1 to 3\n",
/// "move 2 from 2 to 1\n",
/// "move 1 from 1 to 2\n",
/// ];
/// assert_eq!(y22d05(&input, 1), "CMZ");
/// assert_eq!(y22d05(&input, 2), "MCD");
/// ```
pub fn y22d05(input: &str, part: u32) -> String {
let lines: Vec<_> = input.lines().collect();
let mut state = parse_initial_state(&lines);
let mut in_moves = false; // track if we've hit the state/moves separator
let mut output = String::new();
for line in lines {
if in_moves {
// "move X from Y to Z": X is index 1, Y is index 3, Z is index 5
let text: Vec<&str> = line.split_whitespace().collect();
let how_many_to_move = text[1].parse().unwrap();
let from_index: u32 = text[3].parse().unwrap();
let to_index: u32 = text[5].parse().unwrap();
if part == 1 {
for _ in 0..how_many_to_move {
let from: &mut Vec<String> =
&mut state[(from_index - 1) as usize];
let to_move = from.pop().unwrap();
let to: &mut Vec<String> =
&mut state[(to_index - 1) as usize];
to.push(to_move);
}
} else {
let mut holding: Vec<String> = Vec::new();
let from: &mut Vec<String> =
&mut state[(from_index - 1) as usize];
for _ in 0..how_many_to_move {
let to_move = from.pop().unwrap();
holding.push(to_move);
}
let to: &mut Vec<String> = &mut state[(to_index - 1) as usize];
for to_move in holding.into_iter().rev() {
to.push(to_move);
}
}
} else if line.is_empty() {
// we've hit the empty line, switch "modes"
in_moves = true;
} // else continue
}
for mut stack in state {
output += match &stack.pop() {
Some(item) => item,
None => " ",
};
}
output
}
/// The process of processing the initial state is described in [`y22d05`]
/// under the "Parsing the Initial State" header.
fn parse_initial_state(lines: &Vec<&str>) -> Vec<Vec<String>> {
let mut state_lines: Vec<&str> = Vec::new();
let mut state: Vec<Vec<String>> = Vec::new();
for line in lines {
// once we find the empty line we _remove_ (pop) the previous line
// that we saw because it's not actually part of the state
// representation and then we parse it to figure out how many columns
// we should have and then create the necessary empty vectors for each
// stack.
if line.is_empty() {
let columns = state_lines.pop().unwrap();
let number_of_columns: u32 =
columns.split_whitespace().last().unwrap().parse().unwrap();
for _ in 0..number_of_columns {
state.push(Vec::new());
}
break;
}
// we haven't hit the empty line that splits the state and moves yet
// so add this line to the "state_lines" that we'll process below
state_lines.push(line);
}
// loop through the lines that represent the state in reverse order
// (meaning that we start at the _bottom_ of the columns so that we can
// add each element to the column vector
for line in state_lines.iter().rev() {
// whitespace doesn't extend to the end of each line for all columns
// so we need to calculate how many actual columns are in a given line
//
// columns are represented by a length of 4, we add one to the line
// length to compensate for the column spacer trimmed at the end of
// the line
let number_of_columns_in_line = (line.len() + 1) / 4;
// loop through the columns, and if a column begins with a "["
// character it means that the column contains an element, add it to
// the current column
for (i, column) in
state.iter_mut().enumerate().take(number_of_columns_in_line)
{
if line.chars().nth(i * 4).unwrap() == '[' {
column.push(line.chars().nth(i * 4 + 1).unwrap().to_string());
}
}
}
state
}
#[cfg(test)]
mod tests {
use super::*;
use std::fs;
#[test]
fn test_parse_initial_state() {
let input = concat!(
"[A] [B]\n",
"[C] [D] [E] [F]\n",
"[G] [H] [I] [J] [K]\n",
" 1 2 3 4 5\n",
"\n",
"we don't care about this...\n",
"or this...\n",
);
let lines = input.lines().collect();
assert_eq!(
parse_initial_state(&lines),
vec![
vec!["G", "C", "A"],
vec!["H", "D"],
vec!["I", "E", "B"],
vec!["J", "F"],
vec!["K"],
]
);
}
#[test]
fn it_works() {
let input = concat!(
"[A]\n",
"[B] [C] [D]\n",
" 1 2 3\n",
"\n",
"move 2 from 1 to 2\n",
);
assert_eq!(y22d05(input, 1), " BD");
assert_eq!(y22d05(input, 2), " AD");
}
#[test]
fn the_solution() {
let contents = fs::read_to_string("input/2022/day05.txt").unwrap();
assert_eq!(y22d05(&contents, 1), "QMBMJDFTD");
assert_eq!(y22d05(&contents, 2), "NBTVTJNFJ");
}
}