1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
/* Copyright 2023 Mario Finelli
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

//! Advent of Code 2015 Day 11: <https://adventofcode.com/2015/day/11>
//!
//! This was fairly simple to implement and wasn't too challenging but the
//! solution ended up being rather long and verbose. The solution doesn't use
//! strings or regular expressions but operations instead on vectors of code
//! points and so the magic numbers found within correspond to the several
//! characters that we need to know about: `a`: `97`, `z`: `122`, `i`: `105`,
//! `l`: `108`, and `o`: `111`.

/// The solution for the day eleven challenge.
///
/// We take the input as a string and a second parameter for how many valid
/// new passwords we want to generate (it just so happens that in part one it's
/// `1` and in part two it's `2`). We first convert the password into a vector
/// of integers corresponding to the character code points. Then for the number
/// of new passwords that we want we generate the next password and then until
/// we have a valid password we keep generating the next password. Then we
/// convert our vector back into a string and we're done.
///
/// # Example
/// ```rust
/// # use aoc::y15d11::y15d11;
/// // probably read this from the input file...
/// let input = "zzzzzzzz";
/// assert_eq!(y15d11(input, 1), "aaaaaabcc");
/// ```
pub fn y15d11(input: &str, howmany: u32) -> String {
    let mut password: Vec<u8> = input.trim().chars().map(|c| c as u8).collect();

    for _ in 0..howmany {
        password = next_password(password);
        while !valid_password(password.clone()) {
            password = next_password(password);
        }
    }

    String::from_utf8(password).unwrap()
}

/// This function calculates the next password (it doesn't care if it generates
/// a valid password or not). To make things easier it reverses the order of
/// the password first and then calls the next character function (which is
/// responsible for actually incrementing the password correctly) and then
/// reverses it again to return it.
fn next_password(current: Vec<u8>) -> Vec<u8> {
    let mut password = current.into_iter().rev().collect();
    password = increment_char(password, 0);
    password.iter().rev().copied().collect()
}

/// This function is responsible for actually incrementing the password
/// characters correctly. If we have an index greater than the length of our
/// current password then we've overflowed and add a new character. Otherwise,
/// we increment the character of the provided index and if that increases
/// past "z" (code point 122) then we reset it to "a" (code point 97) and then
/// run the increment on the next index recursively until we have incremented
/// everything all the way.
fn increment_char(mut p: Vec<u8>, index: u8) -> Vec<u8> {
    if index >= p.len().try_into().unwrap() {
        p.push(97);
        p
    } else {
        p[index as usize] += 1;

        if p[index as usize] > 122 {
            p[index as usize] = 97;
            p = increment_char(p, index + 1);
        }

        p
    }
}

/// This function determines if the provided password meets all of the
/// requirements laid out in the prompt: no "i", "l", or "o" characters (code
/// points 105, 108, and 111 respectively), at least one run of three
/// characters, and two distinct sets of double characters.
fn valid_password(password: Vec<u8>) -> bool {
    if password.contains(&105)
        || password.contains(&108)
        || password.contains(&111)
    {
        return false;
    }

    let mut found_run = false;
    for w in password.windows(3) {
        if w[1] - 1 == w[0] && w[2] - 2 == w[0] {
            found_run = true;
            break;
        }
    }

    if !found_run {
        return false;
    }

    // if we find a double character record it for later
    let mut found_double: Option<u8> = None;
    for w in password.windows(2) {
        if w[0] == w[1] {
            found_double = Some(w[0]);
            break;
        }
    }

    // if we didn't find a double then we're done, otherwise repeat the above
    // but also check to make sure that we find a double distinct from the one
    // that we already found
    match found_double {
        None => return false,
        Some(double) => {
            for w in password.windows(2) {
                if w[0] == w[1] && w[0] != double {
                    return true;
                }
            }
        }
    }

    false
}

#[cfg(test)]
mod tests {
    use super::*;
    use std::fs;

    #[test]
    fn test_next_password() {
        let mut expected: Vec<u8> = "xy".into();
        assert_eq!(next_password("xx".into()), expected);

        expected = "xz".into();
        assert_eq!(next_password("xy".into()), expected);

        expected = "ya".into();
        assert_eq!(next_password("xz".into()), expected);

        expected = "yb".into();
        assert_eq!(next_password("ya".into()), expected);
    }

    #[test]
    fn test_valid_password() {
        assert!(!valid_password("hijklmmn".into()));
        assert!(!valid_password("abbceffg".into()));
        assert!(!valid_password("abbcegjk".into()));
        assert!(valid_password("abcdffaa".into()));
        assert!(valid_password("ghjaabcc".into()));
    }

    #[test]
    fn test_increment_char() {
        assert_eq!(increment_char(vec!(97), 0), vec!(98)); // a -> b
        assert_eq!(increment_char(vec!(122), 0), vec!(97, 97)); // z -> aa
        assert_eq!(increment_char(vec!(122, 97), 0), vec!(97, 98)); // za -> ab
    }

    #[test]
    fn it_works() {
        let mut input = "abcdefgh\n";
        assert_eq!(y15d11(input, 1), "abcdffaa");

        input = "ghijklmn";
        assert_eq!(y15d11(input, 1), "ghjaabcc");
    }

    #[test]
    fn the_solution() {
        let contents = fs::read_to_string("input/2015/day11.txt").unwrap();

        assert_eq!(y15d11(&contents, 1), "hxbxxyzz");
        assert_eq!(y15d11(&contents, 2), "hxcaabcc");
    }
}